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SUMMARY 

A finite element solution of the two-dimensional incompressible Navier-Stokes equations has been de- 
veloped. The present method is a modified velocity correction approach. First an intermediate velocity is 
calculated, and then this is corrected by the pressure gradient which is the solution of a Poisson equation 
derived from the continuity equation. The novelty, in this paper, is that a second-order Runge-Kutta 
method for time integration has been used. Discretization in space is carried out by the Galerkin weighted 
residual method. The solution is in terms of primitive variables, which are approximated by polynomial 
basis functions defined on three-noded, isoparametric triangular elements. To demonstrate the present 
method, two examples are provided. Results from the first example, the driven cavity flow problem, are 
compared with previous works. Results from the second example, uniform flow past a cylinder, are 
compared with experimental data. 
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INTRODUCTION 

Finite element methods are now widely used for fluid flow problems, and solution algorithms for 
the Navier-Stokes equations are described in numerous papers (see e.g. References 1-6). A num- 
ber of different algorithms have been developed and impressive results were obtained from many 
of them. 

The present paper is concerned with the solution of the incompressible Navier-Stokes equa- 
tions for steady as well as time-dependent problems. We use a time-split, velocity correction 
formulation similar to the one described by Kovacs and Kawahara.4 Variations of this method 
are used by several of the authors cited above. These formulations use a derived pressure equation 
to satisfy the continuity condition. This idea was first introduced by Chorin' in a finite difference 
context. Recently, many other authors have paid much attention to Chorin's idea and several 
variations of his method have been 

The treatment of the advection terms in the momentum equations is another important issue to 
be addressed. A popular method is to use an explicit forward Euler time integration and include 

* On leave from Dalian Maritime University, P. R. China 

027 1 -209 1/93/170349- 16$13.00 
0 1993 by John Wiley & Sons, Ltd. 

Received July 1992 
Revised February 1993 



3 50 G. REN AND T. UTNES 

streamline diffusion (or balance tensor diffusion) in order to improve the stabi1ity.l~~ A generaliz- 
ation of this method is the so called Taylor-Galerkin method, which can also be formulated as 
a two-step predictor-corrector m e t h ~ d . ~  In this paper we use a second-order Runge-Kutta 
method for time integration instead of the formulations mentioned above. 

The present method is tested on two different problems, namely the driven cavity problem and 
flow past a circular cylinder. The results from both of these tests are in good agreement with 
previous calculations or experimental data. 

BASIC EQUATIONS 

The basic equations are the two-dimensional incompressible Navier-Stokes equations and the 
continuity equation 

au 1 
-+(u*V)u= -- v p + v v z u + g ,  
at P 

v - u = o  

where u=(u, v)(m s-') is the velocity, p is the pressure (N m-'), t is time (s), v is the kinematic 
viscosity (m2 SKI), and g is the gravitational acceleration (m s-*). Boundary conditions are 

u=Q(x, t )  on r, with n*GdT=O, I 
where Q is a known function on the boundary r of the domain R and n is the outward-pointing 
normal vector on r. Initial conditions are 

u=u(x, to)=uo(x) in RUT, with V*uo=O in nur (3) 
where uo is a prescribed function. 

THE ALGORITHM 

The algorithm is a modified velocity correction method described by Kovacs and K a ~ a h a r a . ~  
The difference between the present method and the original one is the scheme used for time 
integration. A second-order Runge-Kutta method has been used in the present algorithm. 
Computational results have shown that the numerical stability of the present method is good and 
very little additional computing time is required compared to an explicit Euler scheme. The 
algorithm is given as follows: 

Step 1 

(Vp"/p) and the gravitational (g) terms. 
Calculation of Runge-Kutta coefficients for an intermediate velocity ii omitting the pressure 

K1= -At( - v V ~ U "  + (u" V) u"), (4) 

Uk = U" K1, (5 )  

Kz= -At(-VV'Uk+(Uk.V)Uk). (6) 
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Step 2 

Calculation of an intermediate velocity field 

Solution of the pressure Poisson equation to satisfy the incompressible continuity equation 

v p - - (V.6). 
"-([t) 

Step 4 

Correction of the intermediate velocity field 

u " + l = i i -  - (Vp"-pg). (3 (9) 

The superscript n indicates the nth time step, and At is the time increment. 

THE FINITE ELEMENT METHOD 

The finite element discretization of equations (4)-(9) is performed using the Galerkin weighted 
residual method through the following expansions in the piece-wise polynomial basis functions 
associated with the finite element method. 

N 

U(X, t)= 1 ui(t)4i(x), (10) 

P(X, t )= C pi(t)+i(X), (1 1) 

i =  1 

N 

i =  1 

where N is the number of nodes for velocity and pressure in the discretized domain. The weak 
form of equations (4)-(9) permits di(x) to be discontinuous in the first derivatives and introduces 
natural boundary conditions. Thus &(x) are chosen to be C o  piece-wise linear basis functions 
defined on isoparametric triangular elements. Inserting (10) and (1 1) into (4)-(9) leads to 
a discretized system of equations, which can be written in matrix from for the whole domain. 

Step 1 

Step 2 

Step 3 

MK1= - AtS"u"-AtA"u"+AtT,", 

MUk=MU"+MK,, 

MK2 = -AtS"Uk-AtA"uk+AtT,". 
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Step 4 
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Here u"" and u" are now global vectors containing all nodal values of (u, v) at the (n+ 1)th and 
nth time steps, respectively, P is the global vector for the intermediate velocity field, p" is the global 
pressure vector containing all nodal values of p at the nth time step (p is defined on the same 
nodes as u), r," and r: are the vectors of natural boundary conditions for velocity and pressure 
respectively, M is the mass matrix, S" is the diffusion or Laplacian matrix, and A" = A(u") is the 
advection matrix. 

The element matrices associated with equations (12)-(17) are evaluated on each element as: 

where aT=(b1,  &, &) is the vector of basis functions for an element. 

STABILITY 

The numerical stability of this scheme is limited by the advection-diffusion equation in the 
velocity prediction step. A simplified analysis for the one-dimensional case may be performed 
analogous to Baker and Kim,14 and yields the condition 

Pe 
(2 + Pe) ' 

C < -  

where C = U - dt/dx is the Courant number, and Pe = U - dx/v is the Peclet number. This result is 
valid if the mass matrix is lumped, which is the case in the present computations. 

NUMERICAL EXAMPLES 

Driven cavity jlow 

The classical driven cavity flow is chosen as the first example because it seems to be a standard 
test and there are documented data available for comparison. Reynolds numbers 
Re=uoL/v=lOOO and Re=3200 are chosen. For Re= lOOO, a ( 3 2 x  32) mesh is generated as 
illustrated in Figure 1 ,  with 1089 nodal points and 2048 elements. For Re = 3200, a (40 x 40) mesh 
is generated, and the total number of nodal points is 1681 with 3200 elements. The boundary 
conditions are the domain being a square area ( 1  x 1 m) with three walls fixed (zero velocity), and 
the upper wall sliding with constant velocity uo = 1 m s- '. At the two upper comers u = 0, and at 
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Figure 1. Mesh for cavity flow, Re= loo0 
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Figure 2. Velocity field of cavity flow, Re = lo00 
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Figure 4. hessure field of cavity flow, Re = 3200 
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Figure 5. x-velocity distribution through geometric center of cavity, Re = lo00 and Re = 3200 
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Figure 6. y-velocity distribution through geometric center of cavity, Re= loo0 and Re= 3200 
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the first node in from the corners u = 1/2, as suggested by Sani et a1.lS At the middle point of the 
lower side of the cavity, the pressure is set to p = O .  The time step is At =0.01 s. 

The computed velocity fields for Re = 1000 and Re = 3200 are illustrated in Figures 2 and 3. The 
pressure field for Re=3200 is shown in Figure 4. The results compare well with other calcu- 
lations, for example Ghia et a1.,16 as shown in Figures 5 and 6. It should be noted that the present 
mesh is relatively coarse compared to the ones used by Ghia et a1.16 and Gresho et aL3 

Flow past a circular cylinder 

The modelling of viscous flow around a cylinder is of fundamental interest for several kinds of 
problems. Actual applications are, for example, the computation of flow around moving or fixed 
offshore constructions, underwater robotic vehicles, etc.”, l8 

The mesh for the present calculation is shown in Figure 7 and consists of 4363 nodes and 8404 
elements. The diameter of the circular cylinder is chosen to be 0-005 m, the viscosity is (water 

Figure 7. Mesh for flow around a cylinder. Re= 175,4363 nodes and 8404 elements 

au 
- = 0 , v  = 0 a n  

I I 

Figure 8. Boundary conditions for flow past a cylinder and parameters 
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at 20 "C), and the computational domain is 0.05 x 0 1  m. The Reynolds number based on the 
diameter of the cylinder is Re= 175. The boundary conditions and geometric parameters are 
illustrated in Figure 8. On the surface of the cylinder a no-slip boundary condition is imposed. 
The initial conditions are as follows. The flow is originally uniform with u =0*035 m s - l .  After the 
first time step, the boundary conditions given in Figure 8 are imposed. The time step is chosen to 
be At=0.001 s. 
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Figure 9. Velocity field of flow past a cylinder at time t=Q08 s, Re= 175 
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Figure 10. Velocity field of flow past a cylinder at tlme t=Q8 s, Re=175 
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The time development of the flow is illustrated in Figures 9-16. The velocity field at time 
t =0.08 s is shown in Figure 9, where two symmetric eddies can be seen. These phenomena are in 
good agreement with experimental data.lg The velocity field at time t = 0.8 s is shown in Figure 10 
and illustrates that the two eddies are enlarged along the x-direction. After t =4.0 s the symmetry 
of the flow has disappeared and the vortex street starts to develop, as indicated in Figures 11 and 
13. The vortex street is fully developed at t=6-85 s as shown in Figure 15. Figures 15 and 16 
illustrate the same situation for the velocity field in different co-ordinate frames. Figure 15 is seen 
from a cylinder-fixed frame, while Figure 16 shows the velocity field in the flow-fixed frame. The 
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Figure 11. Velocity field at time t=4.0 s, Re= 175 
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Figure 12. Pressure field at time t=4.0 s, Re= 175 
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-4.4 s 

0 0.01 0.02 0.03 0.04 0.05 

Figure 13. Velocity field at time t-4.4 s, Re= 175 

Figure 14. Pressure field at time t=4.4 s, Re= 175 

latter illustrates the eddies in the wake more clearly than the former. This result is in good 
agreement with the experimental data presented by Prandtl and Tietjens.19 A detailed numerical 
study of the vortex street behind a cylinder is given by Ren.” 

Figure 17 illustrates a comparison between the present results and the experimental data for 
the mean pressure coefficient 
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t=6.85 s 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 

Figure 15. Velocity field at time t = 6.85 s, Re = 175 

t=6.8!5 s 

0 0.0 1 0.02 0.03 0.04 0.05 0.06 0.07 

Figure 16. Velocity field seen from a flow-fixed co-ordinate frame at time t=6%5 S, Re= 175 

on the cylinder surface. It is noted that there is a certain side-wall effect present due to the actual 
ratio of cylinder to tunnel width, d/h, where d is diameter of the cylinder, and h is the width of the 
tunnel. Our results agree well with the experimental data from Grove et aL2' 

DISCUSSION 

( 1 )  Corner singularities 

For the cavity problem, the boundary conditions at the upper corners may produce singular- 
ities. Figure 18 illustrates the effect of applying two different conditions. One is to specify u = 1/2 
at the corners, and the other is to put u=O at the comers and u= 1/2 at the next point from the 
corners. The latter condition was suggested by Sani et a1.l' to avoid a spurious pressure mode 
and this condition has been used in our computations. 



TIME-DEPENDENT INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 361 

0 20 40 60 80 100 120 140 160 180 

angle 

Figure 17. Comparison of pressure coefficients with experimental data, Re= 175 
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The effect of spurious pressure on the result of the cavity flow problem, Re= lo00 

(2) The mesh around the cylinder 

In the second example, flow past a cylinder, the grid near the cylinder should be very fine, 
otherwise the numerical transient process will be much delayed. Figures 19 and 20 illustrate 
results computed on a coarse mesh with 3120 elements and 1655 nodal points. Other conditions 
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Figure 19. Velocity field computed on a coarse mesh, N-point= 1655, N-element=3120, t=DS s, Re=175 
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Figure 20. Velocity field computed on a coarse mesh, t = 4 8  s, Re= 175 

are the same as before. At time t = 0.8 s there is not much difference between results computed 
from the coarse mesh or the fine mesh (compare Figure 19 with Figure 10). However, after time 
t>4 s, the time delay of the vortex street development can be seen clearly (compare Figure 20 
with Figure 13 and note that time is t=4.8 s in Figure 20 while t=4.4 in Figure 13). The main 
reason may be that the non-linear Navier-Stokes equations cannot be resolved on the coarse 
mesh without loss of accuracy. 

(3)  The outflow boundary condition 

In the example of flow past a cylinder, two types of outflow boundary conditions for the 
pressure have been tested. One is to prescribe a constant pressure p = O .  The other is to use 
a traction-free condition, - p  + 2p (au/ax) = 0 (see Reference 21). The traction-free boundary 
condition may be better than the first one when the vortex street is fully developed. The pressure 
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field obtained from the latter condition is more regular than that obtained from using p = O .  We 
implement the traction-free condition in the solution of the Poisson equation and the pressure on 
the outflow boundary is calculated from the known velocity as 

where p i  is the pressure on the outflow boundary, ui is the velocity on the outflow boundary, 
ui+ is the first nodal point inside the outflow boundary in the x-direction, and dx is the distance 
from point of xi to xi + 1. 

( 4 )  The code 

The program is written in the C programming language and compiled and run on 
a SUN/Sparc Station. We have used two methods to solve the Poisson equation. One is the 
Gaussian elimination method, taking account of the symmetric band-structure of the stiffness 
matrix. The other is the so-called skyline solver. Our numerical tests show that the latter is several 
times faster than the former, depending on the number of total points and the bandwidth of the 
assembly system. We recommend the skyline solver method. To represent the results, MATLAB 
has been used. 

CONCLUSIONS 

A finite element solution of the Navier-Stokes equations has been presented. The method is 
a modified velocity correction scheme. A second-order Runge-Kutta method has been used for 
the time integration of the intermediate velocity integration in order to improve the numerical 
stability and time-integration accuracy compared to an explicit Euler scheme. Numerical exam- 
ples have shown that the present results are in good agreement with the experimental data. 
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